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Just Like Haskell
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One subclass for each 
alternative representation

Write Tests
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1. Run tests

2. get message not 

understood

3. define method

4. repeat from 1

…

19. get real failure 



Write Tests
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What’s the problem?
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I need an instance, not the class

• But there need be only one instance of 

REEmpty

• Enter: the Singleton pattern.

• make a class instance-variable called uniqueInstance

• make a class-side method named default

• override new to be an error

What do we have so far?
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Convenience Operations

• Write tests:

self assert: $a asRE printString = 'a'

self assert: (a + b) printString = 'a+b'

• Why compare printStrings?
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Where do the operation methods go?

• In the abstract superclass RegularExpression

- so that they work for all the subclasses
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Refactor tests to remove duplication
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assert: anExpression printsAs: aprintString
! self assert: anExpression printString = aprintString

testPrinting
! self assert: epsilon printsAs: '#'.
! self assert: a printsAs: 'a'.
! self assert: b printsAs: 'b'.
! self assert: aORb printsAs: 'a+b'.
! self assert: ab printsAs: 'ab'.
! self assert: abStar printsAs: 'ab*'.

which brings us to…
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meaning1: sets of strings

• Code very similar to Tim!s Haskell version

• Only tricky part is star

• Haskell version:
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Smalltalk

• Complicated 
enough to need 
a helper method

• Is there a 
simpler way to 
calculate * ?
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REStar

RegularExpression



Cross tests

• introspect on the instance variables of the 
test case

• select those that respond to the meaning1 message

• check that for every string str in re meaning1

• re meaning2: str is true
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Now RE!s pass the tests
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Finite State Machines
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The code with NFSM
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