
Regular Expressions in Smalltalk

CS410/510 Advanced Programming
 Lecture 7:

31

Just Like Haskell

4

Just Like Haskell

4

Just Like Haskell

4

One subclass for each
alternative representation

Write Tests

5

Write Tests

5

1. Run tests

2. get message not

understood

3. define method

4. repeat from 1

…

19. get real failure

Write Tests

5

Write Tests

5

6

What’s the problem?

7

I need an instance, not the class

• But there need be only one instance of

REEmpty

• Enter: the Singleton pattern.

• make a class instance-variable called uniqueInstance

• make a class-side method named default

• override new to be an error

What do we have so far?

8

Convenience Operations

• Write tests:

self assert: $a asRE printString = 'a'

self assert: (a + b) printString = 'a+b'

• Why compare printStrings?

9

Where do the operation methods go?

• In the abstract superclass RegularExpression

- so that they work for all the subclasses

10

Where do the operation methods go?

• In the abstract superclass RegularExpression

- so that they work for all the subclasses

10

Refactor tests to remove duplication

11

assert: anExpression printsAs: aprintString
! self assert: anExpression printString = aprintString

testPrinting
! self assert: epsilon printsAs: '#'.
! self assert: a printsAs: 'a'.
! self assert: b printsAs: 'b'.
! self assert: aORb printsAs: 'a+b'.
! self assert: ab printsAs: 'ab'.
! self assert: abStar printsAs: 'ab*'.

which brings us to…

12

meaning1: sets of strings

• Code very similar to Tim!s Haskell version

• Only tricky part is star

• Haskell version:

13

Smalltalk

• Complicated
enough to need
a helper method

• Is there a
simpler way to
calculate * ?

14

REStar

RegularExpression

Cross tests

• introspect on the instance variables of the
test case

• select those that respond to the meaning1 message

• check that for every string str in re meaning1

• re meaning2: str is true

15

Now RE!s pass the tests

16

Finite State Machines

17

The code with NFSM

18

